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Abstract 

Background:  Glioblastoma (GBM) is considered the most malignant and devastating intracranial tumor without 
effective treatment. Autophagy, apoptosis, and necrosis, three classically known cell death pathways, can provide 
novel clinical and immunological insights, which may assist in designing personalized therapeutics. In this study, we 
developed and validated an effective signature based on autophagy-, apoptosis- and necrosis-related genes for prog‑
nostic implications in GBM patients.

Methods:  Variations in the expression of genes involved in autophagy, apoptosis and necrosis were explored in 518 
GBM patients from The Cancer Genome Atlas (TCGA) database. Univariate Cox analysis, least absolute shrinkage and 
selection operator (LASSO) analysis, and multivariate Cox analysis were performed to construct a combined prognos‑
tic signature. Kaplan–Meier survival, receiver-operating characteristic (ROC) curves and Cox regression analyses based 
on overall survival (OS) and progression-free survival (PFS) were conducted to estimate the independent prognostic 
performance of the gene signature. The Chinese Glioma Genome Atlas (CGGA) dataset was used for external valida‑
tion. Finally, we investigated the differences in the immune microenvironment between different prognostic groups 
and predicted potential compounds targeting each group.

Results:  A 16-gene cell death index (CDI) was established. Patients were clustered into either the high risk or the low 
risk groups according to the CDI score, and those in the low risk group presented significantly longer OS and PFS than 
the high CDI group. ROC curves demonstrated outstanding performance of the gene signature in both the training 
and validation groups. Furthermore, immune cell analysis identified higher infiltration of neutrophils, macrophages, 
Treg, T helper cells, and aDCs, and lower infiltration of B cells in the high CDI group. Interestingly, this group also 
showed lower expression levels of immune checkpoint molecules PDCD1 and CD200, and higher expression levels of 
PDCD1LG2, CD86, CD48 and IDO1.

Conclusion:  Our study proposes that the CDI signature can be utilized as a prognostic predictor and may guide 
patients’ selection for preferential use of immunotherapy in GBM.
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Introduction
Glioma is the most common type of primary brain 
tumors in adults. According to the 2016 World Health 
Organization Classification of Tumors of the Central 
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Nervous System, the diffuse gliomas include WHO grade 
II and grade III astrocytic tumors, grade II and III oligo-
dendrogliomas, grade IV glioblastomas, and related dif-
fuse gliomas of childhood [1]. Various grades of gliomas 
differ considerably in tumor pathology, tumor develop-
ment, and patient prognosis. Glioblastoma (GBM) is 
considered the most malignant and invasive primary 
intracranial tumor, with a high risk of recurrence [2–4]. 
Patients with GBM have a very poor prognosis, with an 
average overall survival of merely 12–15  months [5]. In 
spite of recent advances in standard treatment, including 
surgery, chemotherapy, radiotherapy, and the achieve-
ment in targeted therapies and immunotherapies over 
the past several years, GBM still carries a dismal prog-
nosis with poor survival [6–10]. Therefore, novel prog-
nostic approaches to pick out patients with high risks are 
warranted to further help therapeutic options for GBM 
patients.

Cell death is a critical process that maintains physio-
logical homeostasis in multicellular organisms. Recently, 
numerous studies have revealed that the tumor micro-
environment (TME) could be affected by dying and dead 
cancer cells for their potent immunomodulatory effects 
[11, 12]. Dying/death cell leads to redundant bioactive 
factors release, which can either improve or weaken anti-
cancer immunity. Cell death can also result from severe 
conditions existing in the TME and may significantly alter 
tumor progression. Researches established that multiple 
cell death pathways tended to play a part in the treatment 
response of tumors [13]. The three classically known cell 
death pathways are autophagy, apoptosis, and necrosis 
[14, 15]. Autophagy, the process of self-degradation of 
cellular components, is upregulated when stimulated by 
extra- or intracellular stress and signals, such as starva-
tion and growth factor deprivation [16]. Consequently, 
the chronic stress induction can cause irreversible dam-
age, leading to apoptosis or necrosis [17]. Apoptosis is a 
programmed cell death process with distinct morpho-
logical characteristics and energy-dependent biochemi-
cal mechanisms [18]. It represents a critical pathway for 
eliminating cells that are not vital and protects against 
cells that have received significant genotoxic damage, and 
is instrumental in immune function [19]. Necrosis, the 
aftereffect of irreversible cellular damage, is recognized 
by the rapid destruction of plasma membrane followed 
by cytoplasmic leakage and the spilling of inflammatory 
cellular contents into the TME [20]. In short, the cell 
death processes dysregulation can significantly affect 
tumorigenesis.

GBM is a highly heterogeneous tumors with multiple 
subtypes, functionally different for their specific immu-
nological landscapes, such as differences in T cell infil-
tration and macrophage composition, which require 

different treatment regimens [21, 22]. Immune check-
points, widely studied in recent years, are immunosup-
pressive molecules that avoid normal tissue damage 
and destruction primarily by modulating the immune 
response of T cells. Therefore, activating immune check-
points may cause immune tolerance during tumor pro-
gression. Immune checkpoint inhibitors (ICI) can evade 
anti-tumor immune response, act on the tumor, and 
restrict its growth. The most effective ICI, anti-PD-1/
PD-L1, has been approved in non-small cell lung can-
cer, colon cancer, and melanoma [23]. However, recent 
clinical trials indicated that anti-PD-1/PD-L1 treatment 
might not benefit the clinical outcome of GBM without 
patients’ selection [24]. Besides, contrary to other can-
cers, there is still no immunotherapy approved by Food 
and Drug Administration (FDA) for GBM. One of the 
arguments challenging GBM immunotherapy is its highly 
immunosuppressive TME. Thus, identifying regulators of 
the brain TME could help discover promising new targets 
for therapeutic intervention. Studies analyzed current 
clinical trial failures and demonstrated that biomark-
ers for appropriate patient selection for immunotherapy 
appeared hopeful in GBM treatment [25, 26]. Recently, 
several novel prognostic markers for GBM patients have 
been identified through multiomic analysis and differen-
tial expression profiles. However, most of these studies 
are mathematical analyses based on whole-scale genetic 
or transcriptomic data, and there is still a lack of specific 
research on multiple biological pathways [27–29]. There-
fore, comprehensive recognition of the characteristics 
of TME cell infiltration mediated by multiple cell death 
pathways is needed to deepen our understanding of TME 
immune regulation and help design enhanced treatment 
for GBM patients.

In this study, GBM patients were stratified based on 
a combination of autophagy-, apoptosis- and necrosis-
related gene signatures along with the characteristics 
of their immune response to facilitate the prediction of 
individualized survival and a superior treatment scheme.

Materials and methods
Patient population and multiomic data acquisition
The genomic expression and clinical data of GBM patients 
in the TCGA database were retrieved from GlioVis 
(http://​gliov​is.​bioin fo.cnio.es/) [30]. The RNA sequencing 
data of the Illumina HiSeq 2000 platform and the clini-
cal data were accessed from the Chinese Glioma Genome 
Atlas (CGGA) database (http://​www.​cgga.​org.​cn) [31]. 
We included 518 GBM patients from TCGA and 137 
patients from the CGGA database after excluding those 
without survival information. The data in the TCGA data-
base were analyzed as the training cohort, and data from 
the CGGA dataset were used for validation. The Trans 
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Per Million values of RNA-Seq and robust multichip 
analysis-processed values of microarray data were log2 
transformed and then normalized by the scale method in 
R to make the data comparable between platforms [32]. 
Furthermore, 505 GBM patients’ copy number altera-
tion (CNA) data were obtained from the TCGA database. 
Using the RCircos package in R, Circos plots visualized 
the CNA summary results and determined chromosomal 
alterations [33]. Additionally, the somatic mutation data 
of 390 GBM patients were acquired on the basis of the 
whole-exome sequencing platform from the TCGA data-
base. The data were analyzed and uncovered by utilizing 
the maftools package in R [34].

Gene Expression Analysis to Determine Cell Death Index 
(CDI)
To clarify the prognostic association of cell death-related 
genes in GBM, autophagy-, apoptosis- and necrosis-
related gene lists were accessed from the Gene Ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) databases through the Gene Set Enrichment 
Analysis (GSEA) website(https://​www.​gsea-​msigdb.​
org) [35]. The KEGG dataset of apoptosis-related genes 
(n = 87) (Table S1) and GO gene list of necrosis (n = 49) 
(Table S2) were obtained. Autophagy-related genes 
were downloaded from the GO dataset and the Human 
Autophagy Database (HADb, http://​www.​autop hagy.
lu/index.html). The two gene sets were merged into 
one(n = 495) (Table S3). Univariate Cox regression mod-
els were used in each cell-death pathway to screen genes 
associated with OS in the TCGA datasets. The prog-
nostic gene combination for establishing the index was 
screened out with LASSO regression. To further deter-
mine the optimal genes, a multivariate cox regression 
model was then performed using the “step” function in 
R. Subsequently, 140 patients, with the highest or lowest 
expression level of specific pathway genes, were selected 
from each cell death group. Significant gene signatures 
from individual cell death pathways were chosen to cre-
ate a combined prognostic model to construct a cell 
death index (CDI). The latter was formed on the basis 
of a linear combination of the regression coefficient 
acquired from the multivariate Cox regression model 
and the genes expression levels. The CDI formula was 
calculated as follows: Risk score = (exprgene1 × Coef-
gene1) +  (exprgene2 ×  Coefgene2) +  … +  (exprgene 
n × Coefgene n). GBM patients were assigned to the low 
risk and high risk groups according to the median value 
of the risk scores. Kaplan–Meier survival analyses were 
conducted to compare the overall survival (OS) and 
progression-free survival (PFS) in the two groups. The 
Kaplan–Meier (K-M) method and ROC were performed 
to evaluate the index efficiency. From 518 patients, 40 

patients demonstrated the highest expression level of 
cell death-related genes, and 40 patients with the lowest 
expression level of cell death-related genes were picked 
for further analysis.

Differential analysis of the high and low CDI groups
The differentially expressed genes (DEGs) between the 
high and low CDI groups were determined using the 
limma package in R with conditions of adjusted P < 0.05 
and |fold change (FC)|> 1 [36]. The volcano plot was con-
structed by using the ggplot2 package in R.

Clinico‑Pathological Analysis and Cox‑Proportional Hazard
Pearson’s chi-square (χ2) test was conducted to compare 
categorical variables of clinico-pathological characteris-
tics between groups. Univariable and multivariable Cox 
proportional hazards models were carried out to assess 
the performance of the CDI in predicting prognosis. The 
hazard ratios (HR) with 95% confidence intervals (CI) 
were based on OS.

Evaluation of Cytokines
To assess the immune activity of GBM patients, cytokine 
gene list was acquired using the keyword: ‘KEGG 
cytokine-cytokine receptor interaction’ (n = 265 genes) 
(https://​www.​gsea-​msigdb.​org) [37]. The differential 
expression of cytokines between high and low risk groups 
of individual cell death pathway and functional enrich-
ment analysis was conducted in the web-based applica-
tion of STRING ver.11.0 (http://​strin​gdb.​org) [38].

Estimation of TME (Tumor Immune Environment) cell 
infiltration
Immune infiltration information, including macrophages, 
neutrophils, B cells, CD4 + T-cells, CD8 + T-cells, and 
dendritic cells, etc., were accessed based on the tumor 
immune estimation resource (TIMER2.0) (http://​timer.​
cistr​ome.​org/) [39]. Single-sample geneset enrichment 
analysis (ssGSEA) was utilized to analyze the subgroups 
of tumor-infiltrating immune cells between the high CDI 
and low CDI groups of individual cell death pathway and 
explore their immune function [40]. At the same time, 
CIBERSORT [41], xCell [42], MCP-counter [43], quan-
TIseq [44] and TIMER [45] algorithms were compared 
between the two groups, and a heatmap was used to dis-
play their differences in the immune response. The cor-
relation between tumor immune cell infiltration and the 
CDI was analyzed to investigate the performance of CDI 
in the TME of GBM.

https://www.gsea-msigdb.org
https://www.gsea-msigdb.org
http://www.autop
https://www.gsea-msigdb.org
http://stringdb.org
http://timer.cistrome.org/
http://timer.cistrome.org/
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Assessment of the Role of CDI in Immune Checkpoint 
Blockade (ICB) treatment
Recent researches reported that the expression level of 
ICB key targets might have a close association with the 
clinical outcome of ICI [46]. Therefore, the potential 
immune checkpoints were derived from previous studies 
[47]. To evaluate the role of CDI in ICB therapy of GBM, 
we performed correlation analysis between the gene sig-
nature and expression level of these ICB key targets.

Functional enrichment analysis
Functional enrichment on gene level was completed by 
using the g:Profiler program (https://​biit.​cs.​ut.​ee/​gprof​
iler) [48]. It interprets and maps genes to the correspond-
ing enriched pathways based on well-established data 
sources. The search tool for the Retrieval of Interacting 
Genes/Proteins (STRING) database was utilized to con-
duct the protein–protein interaction (PPI) network to 
uncover the relationships of DEGs [49]. Cytoscape (Ver 
3.8.2) and the plugin of Cyto-Hubba were used for visual-
izing the PPI network and identifying the top 100 highly 
connected protein nodes (hubs) by degree, betweenness 
centrality, and closeness centrality of DEGs [50].

Gene set variation analysis (GSVA)
GSVA was carried out, using the “GSVA” package, to 
assess the difference in the biological process of the CDI 
risk groups [51]. Differential analysis of the enrichment 
scores of KEGG pathways between the high and low risk 
groups was performed using the limma package in R [35, 
36, 52, 53]. The gene sets of “c2.cp.kegg.v7.4.symbols” 
were retrieved from the MSigDB database for analysis. 
The molecular pathways enriched differentially between 
the two groups were determined by |log2FC|> 0.1 and 
adjusted P < 0.05.

Connectivity Map (CMap) analysis
We used the CMap database (https://​clue.​io/) to investi-
gate candidate compounds targeting the molecular path-
ways and genes associated with CDI for GBM patients 
[54]. The Connectivity Map (CMap) analysis can also dis-
play the mechanism of action (MoA) of compounds. The 
top 148 most upregulated genes (P < 0.01) and top 148 
most downregulated genes (P < 0.01) between the high 
and low CDI groups were utilized to inquire the CMap 
database. Potential compounds were identified by the 
most significant highly expressed genes of each group. 
The compounds enrichment scores were obtained, and 
candidate therapeutic drugs for the high risk group were 
screened out by a negative enrichment score.

Statistical analysis
All the statistical analyses of this study were executed 
by the R 4.0.4 software, GraphPad Prism (version 7 
GraphPad Software), and SPSS 23.0. To compare the 
clinico-pathological parameters between groups, the 
independent Student’s t test was utilized for continu-
ous data, while the Pearson’s chi-square (χ2) test was 
utilized for categorical data. Statistical differences were 
compared by the Wilcoxon and Kruskal–Wallis H tests. 
A two-tailed p-value < 0.05 was considered statistically 
significant.

Results
Construction of the cell death index
To determine the prognostic signature of each cell death 
pathway, higher expression of genes in the training set 
(TCGA) were evaluated for prognostic correlation with 
OS, and various gene combinations were tested. Finally, 
the 4-gene apoptosis signature, 8-gene autophagy signa-
ture, and 4-gene necrosis signature displayed prognostic 
association in GBM (Table 1) and the combined 16-gene 
cell death index (CDI) was generated (Fig. 1A). The inter-
action between CDI signature genes in GBM is displayed 
in Fig. 1B.

RNA‑Seq Analysis of Patients in TCGA​
Seven hundred sixty-nine differentially expressed genes 
were identified and 621 of them were upregulated 
at > onefold in high CDI group compared to the low CDI 
group (Table S4). In the low CDI group, 148 genes were 
upregulated at > onefold compared to the high CDI group 
(Table S5). The volcano plot of differentially expressed 
genes between two groups is illustrated in Fig. 2A.

High CDI patients possessed a higher CNA burden 
and lower TMB
CNA and somatic mutation analyses were carried out 
to investigate the genomic variations in the two CDI 
risk groups. The differential analysis of CNA between 
the two groups showed that, compared with the low 
CDI group, 225 (35.3%) genes were significantly ampli-
fied, and 309 (48.4%) genes had deletion variation in 
the high CDI group (Fig.  2B). Moreover, the boxplots 
exhibited more copy number amplifications(p = 3.6e-05) 
and deletions(p = 0.042) burdens in the high CDI group 
(Fig. 2C). Somatic mutation analysis revealed that 31 out 
of the 769 DEGs (4.0%) had a mutation frequency > 1%, 
and most (83.9%, 26/31) of them were upregulated in the 
high CDI group. The top 15 most frequently mutated 
DEGs altered in the 126 GBM samples were visualized 
by oncoplot and illustrated in Fig. 2D. Somatic mutation 
analysis of two CDI groups separately uncovered that 
each risk group had distinct top mutated genes (Fig. 2E). 

https://biit.cs.ut.ee/gprofiler
https://biit.cs.ut.ee/gprofiler
https://clue.io/
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In the low CDI group, TP53 (41%) was most frequently 
mutated, higher than that in the high CDI group, 
in which PTEN (33%) was most frequently mutated 
(Fig. 2F). Figure 2G demonstrated that the CDI risk score 
was significantly higher in IDH-wide-type samples than 
in IDH-mutant samples (P < 0.001) and patients with 
MGMT promoter methylation (P = 0.002) showed sig-
nificantly lower CDI risk scores. All these findings might 
uncover the underlying differences in response to immu-
notherapy between the two groups.

Associations between CDI and clinical features
We calculated the CDI of 518 GBM patients and ranked 
them from low to high to analyze the associations 
between the CDI and clinical features. The demograph-
ics and follow-up data of the patients in the high CDI 
and low CDI groups were compared and presented in 
Table 2. In the TCGA cohort, univariate and multivariate 
analyses demonstrated that the high CDI group was sig-
nificantly associated with OS (HR = 2.850, 95%CI:1.981–
4.100, P < 0.001) (Table  3) and PFS (HR 2.099, 

Table 1  The prognostically significant gene signature within apoptosis, autophagy and necrosis in Glioblastoma

Cell Death Process Gene Gene ID Gene (Full Name)

Apoptosis BID 637 BH3 interacting domain death agonist

CFLAR 8837 CASP8 and FADD like apoptosis regulator

CHP1 11,261 Calcineurin like EF-hand protein 1

PRKAR1B 5575 Protein kinase cAMP-dependent type I regulatory subunit beta

Autophagy SREBF1 6720 Sterol regulatory element binding transcription factor 1

SERPINA1 5265 Serpin family A member 1

PRKAG2 51,422 Protein kinase AMP-activated non-catalytic subunit gamma 2

PRKAB2 5565 Protein kinase AMP-activated non-catalytic subunit beta 2

MET 4233 MET proto-oncogene, receptor tyrosine kinase

MAPK3 5595 Mitogen-activated protein kinase 3

LAMTOR3 8649 Late endosomal/lysosomal adaptor, MAPK and MTOR activator 3

EEF1A2 1917 Eukaryotic translation elongation factor 1 alpha 2

Necrosis CASP3 836 Caspase 3

NOL3 8996 Nucleolar protein 3

TRAF3 7187 TNF receptor associated factor 3

TRAP1 10,131 TNF receptor associated protein 1

Fig. 1  A) Combined cell death index (CDI) was generated, which included the highest expression of genes involved in autophagy, apoptosis, and 
necrosis. B) The interaction between CDI signature genes in GBM. The circle size represented the effect of each signature gene on the prognosis, 
and the range of values calculated by Log-rank test was p < 0.001, p < 0.01, p < 0.05 and P < 0.1, respectively. The Autophagy, apoptosis and necrosis 
signature gene was marked with blue, yellow and red respectively. Green dots in the circle represent protective factors of prognosis and black dots 
in the circle represent risk factors of prognosis. The lines linking signature genes showed their interactions, and thickness showed the correlation 
strength between genes. Negative correlation was marked with blue and positive correlation with red
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95%CI:1.541–2.858, P < 0.001) (Table S6), suggesting that 
the CDI high risk could independently predict the OS 
and PFS of GBM patients. In addition, radiotherapy was 
a favorable factor for patients’ survival (OS, HR = 0.224, 
95% CI:0.125–0.403, P < 0.001; PFS, HR = 0.420, 95% 
CI:0.299–0.589, P < 0.001).

As illustrated in Fig.  3, patients were assigned into 
either the high CDI group or the low CDI group according 
to their median risk score (Fig.  3A). With the risk score 
increasing, the number of alive patients reduced (Fig. 3B). 
Kaplan–Meier analyses exhibited that patients with a high 
CDI had significantly worse OS and PFS than those with a 
low CDI (Fig. 3C, P < 0.0001; Fig. 3E, P < 0.0001). The pre-
dicted efficiencies of CDI were evaluated by ROC curves 
(Fig. 3D and Fig. 3F). The results illustrated that the AUCs 
of CDI for predicting the 1.5-, 3- and 4.5-year OS were 
0.727, 0.833 and 0.844, respectively.

Validation of CDI
One hundred thirty-seven GBM patients in the CGGA 
database were enrolled as validation data set for assessing 
the signature performance. The CDI risk score of the vali-
dation cohort patients was then calculated according to the 
risk score formula and subsequently allocated into either the 
high CDI or the low CDI group (Fig. 4A). The demograph-
ics and clinicopathological data of the patients in the two 
groups were compared and presented in Table 2. Univari-
able and multivariable Cox analyses found that the high CDI 
group was significantly associated with OS (HR = 1.498, 
95%CI:1.037–2.166, P < 0.05) (Table 3). Consistent with the 
findings in TCGA, the Kaplan–Meier survival curves dem-
onstrated that high CDI patients had a poorer prognosis 
than those with a low CDI (Fig. 4C, P < 0.0001). The AUCs 
of ROC curves for predicting the 1.5-, 3.0- and 4.5-year sur-
vival of GBM in the dataset were 0.607, 0.600, and 0.721, 
respectively (Fig.  4D). Concomitantly, the OS and alive 
patients deceased with an increase in risk scores (Fig. 4B). 
These results implied a satisfactory performance of CDI for 
survival prediction in GBM patients.

Cytokine Gene Expression Analysis
In the autophagy group, TNFRSF12A, OSMR, LIF, CCL2 
and VEGFA displayed higher expression levels in the high 

risk group, whereas BMP2 showed a higher expression 
level in the low risk group (Fig. 5B). Analyses conducted 
on the apoptosis and necrosis groups were depicted in 
Fig. 5A and 5C. In the CDI group, the expression level of 
CCL2, LIF, FAS, IL1B, CXCL10, CCL20, TNFSF13, IL6, 
IL1R2, IL10RA, and IL13RA1, among others, were higher 
in high CDI patients whereas the BMP2 expression level 
was higher in the low CDI patients (Fig.  5D). Further-
more, functional enrichment analysis showed that the 
high CDI group seemed to have a higher inflammatory 
cytokines proportion than the low CDI group (Fig. 5E).

Immune cell analysis
Figure  6A displays the heatmap of immune responses 
between low CDI and high CDI groups, based on CIB-
ERSORT, xCell, MCP-counter, quanTIseq, ssGSEA and 
TIMER algorithms. The results established that the high 
CDI group exhibited higher immune scores, indicat-
ing a significantly increased immune cell infiltration. To 
estimate the correlations between the CDI and immune 
cells, spearman analysis was performed, and the results 
are illustrated in Fig.  6B. Correlation analysis based on 
the ssGSEA of the TCGA dataset showed that higher 
Treg, T helper cell and macrophages infiltration corre-
lated with the high risk group of all the three cell death 
pathways (Fig. 6C, 6D and 6E). Notably, neutrophils and 
aDCs infiltration were higher in patients with high necro-
sis, apoptosis, and CDI groups. In contrast, B cells were 
enriched in patients with low necrosis, apoptosis, and 
CDI. Furthermore, the ssGSEA algorithm demonstrated 
a significant difference between the low CDI and high 
CDI groups in T cell functions, including checkpoint 
(inhibition), cytolysis, CCR, regulation of inflammation, 
co-stimulation of T cell, co-inhibition of T cell, and type 
I INF response, as illustrated in Fig. 6F. Altogether, these 
results imply that CDI may present a novel understand-
ing of the immune response in GBM.

CDI correlated with Key Genes of ICB Therapy in GBM
Correlation analysis showed that the expression levels 
of 20 (i.e., PDCD1, IDO1, etc.) ICB-related genes were 
significantly different between high CDI and low CDI 
groups (Fig.  7D). Similar analyses were also performed 

Fig. 2  A) Volcano plot showing the differential expression of genes between high CDI and low CDI patients (p < 0.05, |log2 fold-change|> 1). B) 
The differential analysis of copy number variations between two groups was visualized by Circos plot, which revealed that compared with the low 
CDI group, 225 (35.3%) genes were significantly amplified, and 309 (48.4%) were significantly deleted in the high CDI group. Red dots represented 
amplifications and blue dots represented deletions. C) Left panel: Circos plots of each risk group revealing the amplifications and deletions of 
chromosomes. Right panel: Boxplots inhibited more burdens of copy number amplifications and deletions in high CDI group. D) Waterfall plots of 
15 most frequently mutated DEGs which were altered in 126 GBM samples. E) Waterfall plots showed the top 10 mutated in high risk and low risk 
group. F) The proportion of mutation status of PTEN, ATRX, TP53 and EGFR in the two groups. G) Violin plots of CDI risk score in individual samples of 
GBM patients, stratified by IDH, MGMT promoter and TERT mutation status

(See figure on next page.)
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Fig. 2  (See legend on previous page.)



Page 8 of 21Bi et al. BMC Cancer          (2022) 22:233 

Table 2  Demographics and clinicopathological features of GBM patients in the TCGA and CGGA cohort

Variables TCGA cohort CGGA cohort

Total (n = 518) CDI low risk 
(n = 248)

CDI high risk 
(n = 270)

Total (n = 137) CDI low risk (n = 66) CDI high risk (n = 71)

Age (years) 57.54 ± 14.60 55.30 ± 15.94 59.60 ± 12.95 46.61 ± 12.56 42.88 ± 11.30 50.08 ± 12.76

Gender
  Male 314 154 160 87 37 50

  Female 204 94 110 50 29 21

Surgery
  Tumor resection 451 211 240 NA NA NA

Biopsy only 65 36 29 NA NA NA

  NA 2 1 1 NA NA NA

Pretreatment KPS
   ≥ 80 286 151 135 NA NA NA

   < 80 101 41 60 NA NA NA

  NA 131 56 75 NA NA NA

Radiotherapy
  Yes 402 207 195 100 47 53

  No 94 33 61 32 19 13

  NA 22 8 14 5 0 5

TMZ chemotherapy
  Yes 298 154 144 99 51 48

  No 197 85 112 34 15 19

  NA 23 9 14 4 0 4

Standard chemoradiotherapy
  Yes 199 101 98 NA NA NA

  No 297 139 158 NA NA NA

  NA 22 8 14 NA NA NA

TCGA subtype
  Classical 143 57 86 NA NA NA

  Mesenchymal 152 40 112 NA NA NA

  Neural 88 51 37 NA NA NA

  Proneural 135 100 35 NA NA NA

G-CIMPstatus
  G-CIMP 45 44 1 NA NA NA

  Non G-CIMP 473 204 269 NA NA NA

IDH status
  Mutant 30 29 1 39 37 2

  Wild type 368 179 189 98 29 69

  NA 120 40 80 0 0 0

MGMT promoter status
  Methylated 170 94 76 65 41 24

  Unmethylated 177 69 108 70 24 46

  NA 171 85 86 2 1 1

1p/19q status
  Codeletion NA NA NA 7 7 0

  Non-codeletion NA NA NA 127 58 69

  NA NA NA NA 3 1 2

Overall Survival (OS)
  > 3 years 48 44 4 17 11 6

  ≤ 3 years 470 204 266 120 55 65
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in the other three classically known cell death path-
ways (Fig.  7A, 7B and 7C). We singled out seven key 
ICI genes (CD86, CD40, PDCD1, CD48, CD200, IDO1, 
and PDCD1LG2) for further research. To investigate the 
potential effect of the CDI in the ICB therapy of GBM, the 
correlation analyses were performed between the expres-
sion level of the ICB key genes and the CDI risk scores 
(Fig. 7E). The result revealed that the CDI risk score had 
close relationship with CD86 (r = 0.28; p = 7.0e − 11), 
PDCD1LG2 (r = 0.23; p = 1.4e − 07), CD48 (r = 0.21; 
p = 1.3e − 06), and PDCD1(r = -0.23; p = 1.4e − 07) 
(Fig. 7F), indicating CDI might have a nonnegligible role 
in the outcome prediction of ICB treatment in GBM.

Enrichment analysis
Functional enrichment analysis of differential gene 
expressions between high CDI and low CDI groups iden-
tified 769 genes based on an inclusion filter of > onefold 
for the DEGs. 621 genes of them were upregulated in 
high CDI group, while 148 genes of them were upregu-
lated in the low CDI group (Fig. 8A and 8B). Patients in 
high CDI group had significant immune-related path-
ways, whereas the patients in low CDI group lacked 
enrichment in immune-related pathways. The enriched 
Gene Ontology terms in high CDI group were recep-
tor ligand activity, signaling, cytokine, and chemokine 
activity (Fig. 8C and 8D). Conversely, the enriched Gene 
Ontology terms in low CDI group were predominated by 
transmembrane transporters and gated channel activity 
(Fig. 8E and 8F).

Potential molecular pathways and underlying mecha-
nisms related to the CDI of GBM were investigated by 
performing GSVA. The results identified that 19 path-
ways were positively correlated with the high CDI group, 
while 1 pathway was positively correlated with the low 
CDI group (Fig. 8G). High CDI patients mainly correlated 

with toll-like receptors signaling, JAK-STAT signaling, 
chemokine signaling pathway, complement and coagu-
lation cascades, ECM receptor interaction, and others, 
whereas the low CDI group mainly correlated with gly-
oxylate and dicarboxylate metabolism.

The PPI network of the 769 overlapping DEGs was 
selected from the STRING database. The top 100 hub 
proteins were mined using Cyto-Hubba, and the PPI net-
work was then performed and visualized in the Cytoscape 
software (Fig. 8H). The network suggested strong interac-
tions among these hub genes.

Potential compounds targeting the two CDI groups
CMap analysis was performed to investigate potential 
drugs targeting the two CDI groups of GBM (Table S7, 
Table S8, and Figure S1). Compounds with a score less 
than -90.0 or higher than 90.0 were selected, the pre-
dicted drugs are listed in Table 4. It was determined that 
nine compounds targeting 7 molecular pathways had a 
score of less than -90 and were potential inhibitors for 
high CDI patients. On the other hand, 5 pathways tar-
geted by 7 compounds with a score higher than 90 were 
considered potential inhibitors for low CDI patients.

Discussion
GBM is the most common primary intracranial tumor 
with high malignancy and poor outcomes. Relevant 
molecular biomarker models for predicting the prognosis 
of GBM, such as hypoxia, ferroptosis-related gene, and 
stem cell signatures, have been established to improve 
patients’ survival and develop novel individualized treat-
ments [55–57]. However, their accuracy and predictive 
abilities remain limited, and most of them were devel-
oped based on single transcriptomics data with inade-
quate focus on biological pathways. Autophagy, apoptosis 

Table 2  (continued)

Variables TCGA cohort CGGA cohort

Total (n = 518) CDI low risk 
(n = 248)

CDI high risk 
(n = 270)

Total (n = 137) CDI low risk (n = 66) CDI high risk (n = 71)

OS status
  Deceased 441 203 238 124 59 65

  Living 77 45 32 13 7 6

Progression-Free Survival (PFS)
  > 3 years 24 22 2 NA NA NA

 ≤ 3 years 494 226 268 NA NA NA

PFS status
  Progression 442 201 241 NA NA NA

  No progression 76 47 29 NA NA NA
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and necrosis represent three significant biological hall-
marks of tumors that are valuable in predicting GBM 
patients’ prognosis. In this study, we constructed a com-
bined gene signature involved in autophagy, apoptosis, 
and necrosis, and evaluated its prognostic effect and cor-
relation with immune cells and mediators.

We first integrated the genomic information of 518 
GBM patients from the TCGA database to comprehen-
sively evaluate the prognostic of genes involved in the 
three classically known cell death pathways and identi-
fied a novel 16-gene CDI signature. Among these sig-
nificant genes of the signature, BID, CHP1, MAPK3, 
PRKAB2, PRKAG2 and TRAP1, were favorable factors 
for GBM patients’ survival in this study. BID is a pro-
apoptotic member of the Bcl-2 protein family and could 
promote Ca2 + -induced neuronal injury [58]. Inhibi-
tion of BID during acute endoplasmic reticulum stress 
may protect against cell death [59]. In addition, stud-
ies reported that BID was associated with the prognosis 
of immunoglobulin A nephropathy [60]. TRAP1 which 
affects the mitochondrial protein quality control system 
and mitochondrial metabolism, has multiple functions 
in mitochondria. Researchers found that suppressing the 
function of TRAP1 would benefit temozolomide therapy 
in GBM in  vitro, revealed great potential and practical 
value in GBM treatment. [61]. CHP1, MAPK3, PRKAB2 
and PRKAG2, these four genes, were rarely focused on. 
Other ten genes of the CDI gene signature, including 
CFLAR, PRKAR1B, EEF1A2, LAMTOR3, MET, SER-
PINA1, SREBF1, CASP3, NOL3, TRAF3, were risk factors 
for GBM patients’ survival. EEF1A2 is a translation factor 
selectively expressed by heart, skeletal muscle, nervous 
system and some specialized cells. It is a putative onco-
gene highly expressed in ovarian cancer [62]. Studies have 
shown its negative prognostic role in breast cancer, non-
small cell lung cancer and gastric cancer [63–66]. MET 
plays a well-defined role as a selectable oncogenic driver 
of tumor proliferation. Preclinical studies found that 
inhibition of MET could reduce cell survival, local inva-
sion and metastasis to distant sites [67]. CASP3 plays an 
important role in the development of the brain. Moderate 
active CASP3 levels were found in human GBM samples 
and down regulation of CASP3 may inhibit the migration 
GBM cells, suggesting that CASP3 inhibition may serve as 
a novel therapeutic strategy for GBM [68]. NOL3 protects 
against oxidative stress-induced cell death. Researches 

showed a tumor suppressor role of NOL3 in the patho-
genesis of myeloid malignancies [69]. LAMTOR3 and 
SERPINA1 both showed prognostic effect in tumors 
[70, 71]. Compared with the previous autophagy-related 
gene signatures for GBM, the 8 autophagy-related genes 
included in CDI were all novel [72–74]. In addition, their 
data source and bioinformatic processes are different. Our 
findings could propose several potential targets for glio-
blastoma therapy. As the first prognostic model with three 
cell death pathway-related genes for GBM patients, the 
CDI signature can simultaneously reflect the tumor’s cell 
death characteristics and is convenient for clinical use.

We classified patients into two groups based on their 
CDI, and analyzed the correlation between CDI subtypes 
and clinical features. The results indicated that low CDI 
patients had longer OS and PFS. Moreover, the correla-
tion between CDI and clinicopathological parameters, 
as well as survival outcomes, suggests that CDI has an 
effective prognostic prediction in GBM patients. After-
ward, the CDI signature was verified in the CGGA cohort 
patients. ROC curves and survival analysis revealed an 
efficient performance of CDI.

Further in this study, we explored the correlation of 
CDI with the TME cell infiltration and ICI in the prog-
nosis of GBM. GBM is one of the most immunologically 
“cold” tumors, which presents an unsatisfactory treatment 
effect with immunotherapy [75]. Although the results so 
far are mostly disappointing, a large number of clinical 
trials indicated that immunotherapy remains conceptu-
ally promising for GBM treatment [76–78]. Previous stud-
ies revealed that the poor results of immunotherapy were 
mainly due to the profound immunosuppressive charac-
teristic of GBM and a TME that is challenging for immune 
cells [26]. Profiling the tumor immune microenviron-
ment has lately been regarded as one of the future break-
throughs to improve immunotherapy of GBM [79, 80]. 
Herein, neutrophils, macrophages, T helper cells, Tregs, 
TIL, and aDCs were enriched in patients with a high 
CDI. The CDI risk score was significantly correlated with 
immune cell infiltration (i.e., neutrophils, macrophages, T 
helper cells, Tregs, TIL, and aDCs). Besides, the ssGSEA 
analysis also pointed that the infiltrating immune cells 
(i.e., neutrophils, macrophages, T helper cells, Tregs, TIL, 
and aDCs) were remarkably increased, and immune sig-
natures (i.e., checkpoint, cytolytic, CCR, regulation of 
inflammation, co-stimulation of T cell, co-inhibition of T 

(See figure on next page.)
Fig. 3  Distribution of the CDI in TCGA training cohort. A) Classification of patients into different risk groups based on CDI. B) Distribution of patients’ 
survival time and status. C) Kaplan–Meier survival analysis suggested that patients’ OS were significantly different between high CDI and low CDI 
group. D) The prognostic performance of CDI demonstrated by ROC curves for predicting the 1.5-, 3.0-, and 4.5- year OS rates. E) Kaplan–Meier 
survival analysis suggested that patients’ PFS were significantly different between high CDI and low CDI group. F) The prognostic performance of 
CDI demonstrated by ROC curves for predicting the 1.5-, 3.0-, and 4.5- year PFS rates
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Fig. 3  (See legend on previous page.)
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cell, and type I INF response) were significantly activated 
when the risk score was elevated, indicating that the CDI 
signature possesses an unneglectable role in the TME of 
GBM. The higher neutrophils and macrophages infiltra-
tion in high CDI risk patients reflected high inflammation 
and local immune dysfunction in TME [81]. In fact, the 
presence of macrophages has been approved to be a nega-
tive predictor for survival in high-grade gliomas murine 
models and it could impair antitumor immunological 
functions of TME in glioblastoma [82, 83]. Effector T cell 
infiltration in the tumor has been identified positively 
correlated with patients’ survival whereas the Treg frac-
tion increase in GBM patients implied a deficit of patient 
effector T-cell responsiveness, suggesting that higher 
Tregs might be related with poor survival of patients [84, 

85]. All the above studies suggest correlations between the 
CDI and TME. Therefore, targeting specific GBM patients 
based on CDI selection may help immunotherapy achieve 
a superior therapeutic effect.

With the development of ICB treatment, ICIs have 
greatly affected the cancer treatment scheme [86, 87]. 
Indeed, ICB treatment has brought a novel field for GBM 
patients’ clinical management [88, 89]. Even though cur-
rent clinical trials of ICB treatment in GBM failed, dem-
onstrating appropriate patients, benefiting from ICB 
treatment, through various biomarkers, still appears 
promising in GBM treatment. In this study, the CDI signa-
ture was negatively associated with the ICB treatment key 
target genes(i.e. PDCD1 and CD200), and the expression 
level of some ICB-related genes ( i.e. PDCD1LG2,CD86, 

Fig. 4  Distribution of the CDI in CGGA validation cohort. A) Classification of patients into different risk groups based on the CDI. B) distribution of 
patients’ survival time and status. C) Kaplan–Meier survival analysis suggested that patients’ OS were significantly different between high CDI and 
low CDI group. D) The prognostic performance of CDI demonstrated by ROC curves for predicting the 1.5-, 3.0-, and 4.5- year OS rates
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CD48, CD40, and IDO1) elevated significantly with an 
increase of the CDI risk score. The activation of IDO is 
involved in tumorigenesis by helping tumor cells evade 
immune surveillance [90]. In addition, studies have found 
that high IDO1 expression was associated with the poor 
prognosis of GBM [91]. Therefore, ICB therapy targeting 
patients with high IDO1 might achieve superior treatment 
effect. Besides, our data also revealed that low CDI risk 
patients were more likely to have a higher tumor mutation 
burden. Researchers construed that the low TMB in GBM 
was a fundamental cause for its failure in immunotherapy 
except for the immunosuppressive microenvironment 
[92, 93]. Thus, low CDI patients with high TMB were 
speculated to show a satisfactory therapeutic effect with 
ICB treatment. Overall, our findings indicated that CDI 
might well predict the clinical outcome of ICB therapy in 
GBM patients.

CMap analysis was performed to find potential com-
pounds targeting genes related to CDI, enabling more 
practical results. In the case of the high CDI group, 

ruxolitinib was uncovered as one of the candidate drugs. 
Ruxolitinib was recently found to prevent glioblas-
toma invasion and tumorigenesis by inhibiting the IFN-
induced JAK/STAT signaling pathway [94, 95]. Besides, it 
has also been proposed for use in patients with chronic 
neutrophilic leukemia for its safety and efficacy in inhib-
iting JAK1/2 [96]. For the low CDI group, 3 out of 7 com-
pounds with a score higher than 90 were PKC activators, 
consistent with a recent study that confirmed PKC as a 
suitable druggable target to treat recurrent GBM [97]. 
The above researches demonstrated the reliability of drug 
screening in our study and the feasibility to applicate in 
GBM treatment. To further authenticate the therapeutic 
value of these compounds, more studies are warranted.

Although the results of our study indicate that CDI 
can serve as an effective prognostic signature for GBM 
patients, there are also some limitations. First, our 
research is mainly based on integrating the genomic data 
from public datasets to comprehensively assess the role of 
CDI with the TME cell-infiltrating characteristics in GBM 

Fig. 5  Volcano plot showing the differential expression of cytokines (n = 265 genes) between patients in the high and low significant gene 
expression of individual cell death pathway (p < 0.05): A) apoptosis, B) autophagy, C) necrosis, D) CDI. E) Gene Ontology (GO) functional enrichment 
of genes with higher expression in high CDI group

Fig. 6  A) Heatmap for immune responses based on XCELL, TIMER algorithms, CIBERSORT, quanTIseq, MCPcounter and ssGSEA among high and 
low risk group. B) Correlations between CDI riskscore and the immune cells using Spearman analysis. Negative correlation was marked with blue 
and positive correlation with red. Immune cell distribution and immune function in patients with the high and low significant gene expression of 
individual cell death pathway: C) apoptosis, D) autophagy, E) necrosis, F) CDI

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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and predicted potential compounds targeting patients 
with different CDI scores. Verification by cell and animal 
experiments can undoubtedly make our results more reli-
able. But due to our limited laboratory and samples, it is 
extremely difficult for us to carry out related experiments. 
Therefore, further validation in multicenter, prospective 

cohort studies with new experimental validation is 
needed to support the conclusions of this research. Sec-
ond, the definition of GBM has been change based on the 
2021 WHO Classification of Tumors of the Central Nerv-
ous System. The common diffuse gliomas of adults were 
divided into only 3 types: Astrocytoma, IDH-mutant; 

Fig. 7  Comparison of immune checkpoint blockade–related genes expression levels in patients with the high and low significant gene expression 
of individual cell death pathway: A) apoptosis; B) autophagy, C) necrosis, D) CDI. E) Association analyses between immune checkpoint inhibitors 
CD86, CD40, PDCD1, CD48, CD200, IDO1 and PDCD1LG2 and CDI. F) Correlation plot showing the association between CDI risk model and CD86, 
PDCD1LG2, CD48, CD40, IDO1, CD200 and PDCD1
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Fig. 8  Functional enrichment analysis of highly expressed genes (log2 fold-change > 1) in the A) high risk group; and B) low risk group. Pathways 
enriched in high and low CDI groups: Molecular Function (GO: MF) and Biological Process (GO: BP) of the (C, D) high CDI group and (E, F) the low 
CDI group. G) Heatmap illustrated the enrichment scores of 20 differentially enriched molecular pathways evaluated by GSVA analysis between low 
CDI and high CDI patients. Red represented high enrichment scores, and blue represented low enrichment scores. H) PPI network of hubba DEGs 
obtained from the DEGs network
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Oligodendroglioma, IDH-mutant and 1p/19q-codeleted; 
and Glioblastoma, IDH-wildtype [98]. The classification 
of glioblastoma, IDH wild type includes the category of 
glioblastoma, IDH wild type defined in the 2016 World 
Health Organization Classification of Tumors of the Cen-
tral Nervous System. In addition, diffuse astrocytoma, if 
accompanied by microvascular proliferation or necrosis 
or TERT promoter mutation or EGFR gene amplifica-
tion or + 7/-10 chromosome copy number changes, will 
also be included in glioblastoma, IDH wild type cat-
egory. Our research data of GBM patients were derived 
from TCGA database and the Chinese Glioma Genome 
Atlas (CGGA) database in which patients were classified 
according to the 2007/2016 WHO classification system 
[99, 100]. It is really hard to reclassify patients obtained 
from the previous data with the new WHO classification, 
due to the complicated new diagnostic criteria with vari-
ous mutation information and potential diagnostic bias 
in the second classification. Therefore, analysis of CDI in 
GBM patients classified by the latest WHO Classification 
is warranted subsequently with new constructed cohort. 
Third, an immunotherapy cohort is needed to validate the 
relationship between CDI and immunotherapy response 
for the limited number of patients under immunotherapy.

In conclusion, this research provides a potential 
approach for screening patients at higher risks of mortal-
ity based on the cell-death-based gene signature. Moreo-
ver, CDI was significantly associated with immune cell 
infiltration as well as ICB treatment key genes in GBM. 
Thus, this study brings a novel signature to promote the 
individualized prediction of overall survival and deepen 

the understanding of the TME in GBM, further providing 
promising clinical applications in GBM therapy.
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